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ABSTRACT 

THE MECHANISM OF SUPPRESSION BY A PROTECTIVE 

PEPTIDE IN A MOUSE MODEL OF MULTIPLE SCLEROSIS 

 

by 

 

Alaa Mansour Almatrook 

 

University of Wisconsin-Milwaukee, 2015 

Under the Supervision of Jeri-Anne Lyons, PhD 

 

Abstract: Multiple Sclerosis (MS) is an autoimmune demyelinating disease of the central 

nervous system (CNS). MS is characterized by an immune response directed against 

myelin sheath. This immune response results in demyelination, which leads to the clinical 

symptoms of MS. It is accepted that MS is mediated by T helper 1/ T helper 17 immune 

responses. However, the role of B cells and antibodies (Abs) are still under debate. The 

primary animal model for MS is the experimental autoimmune encephalomyelitis (EAE) 

that is induced by immunizing animals with one of the myelin components. We previously 

showed that immunizing mice with the recombinant form of myelin oligodendrocyte 

glycoprotein (rMOG) results in ameliorated EAE compared to mice immunized with the 

encephalitogenic peptide MOG35-55. This amelioration was due to the presence of a cryptic 

epitope of MOG61-85 in rMOG as observed in previous peptide mapping analysis. We 

further investigated the mechanism of EAE amelioration in mice immunized with a longer 
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peptide MOG35-85, encompassing both MOG35-55 and MOG61-85 peptides. The mechanism 

of suppression was shown to be independent of interleukin-10 (IL-10) secretin. This led to 

the hypothesis that MOG61-85 ameliorates EAE through the secretion of transforming 

growth factor-beta (TGF-β). Therefore, B cell deficient (B cell-/-) mice were either co-

immunized with both MOG35-55 and MOG61-85 peptides or immunized with MOG35-55 only. 

Mice were monitored for EAE induction and progression. The cellular response to MOG61-

85 in vitro priming was assessed using flow cytometry. Results showed comparable FoxP3 

expression level in CD4+CD25+ T cells between cell cultures; however a slight increase in 

FoxP3 expression in CD8+CD25- T cell population was observed with MOG61-85 in vitro 

priming that was dependent on MOG61-85 in vivo priming. These results support the 

suppressive effect of MOG61-85 on the immune response and suggest a role of CD8 T 

regulatory (Treg) cell population in EAE amelioration. Evaluation of MOG61-85 specific 

signaling cytokine showed that MOG61-85 induces regulation independent of IL-10 

secretion. This was confirmed by immunizing wild-type (WT) and IL-10 deficient (IL-10-

/-) mice with rMOG and measuring the anti-inflammatory cytokines produced in response 

to MOG61-85 in vitro priming. Analysis for TGF-β showed that MOG61-85 specific immune 

response is characterized by high TGF-β secretion. To evaluate the immune response 

generated with MOG61-85 stimulation, TGF-β:IL-6 ratio was mathematically calculated. 

Data showed that MOG61-85 induces an anti-inflammatory immune response characterized 

by high TGF-β and low IL-6 secretions. These experiments provide understanding of the 

protective immune response generated in response to MOG61-85 priming. 
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CHAPTER I: INTRODUCTION 

Multiple Sclerosis (MS) 

     Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS); 

the brain and the spinal cord. It is mediated by an inflammatory immune response directed 

against the myelin sheath insulating neurons. This inflammatory response results in myelin 

damage or demyelination, which interferes with the transmission of the nerve impulses of 

the affected neurons. Demyelination exposes neurons to toxic inflammatory elements, 

which increase the probability of axonal loss leading to permanent neurological disability. 

These areas of inflammation and neural injury are observed as perivascular brain lesions 

or plaques within the white matter [1,2]. 

     MS occurs mostly in young adults ranging between 20-40 years old [1,2]; however, 

recently more pediatric cases are being reported. There is no known explanation of the 

increase in MS prevalence rate among this population [3]. Additionally, MS is three times 

more common in females than males. Currently, MS has a global prevalence of 2.5 million 

people with 400,000 cases solely in the United States [4].  

Etiology and Risk Factors 

     The exact cause of MS is still unknown, however, certain genetic and environmental 

risk factors were found to increase the susceptibility to MS development. Major 

histocompatibility complex (MHC) genes are the most common genetic risk factor for MS 

development, particularly human leukocyte antigens (HLA) such as HLA-DR and HLA-

DQ molecules [1,2,5]. Additionally, studies of non-HLA genes, such as interleukin-7 

receptor (IL-7R) [6] and IL-2 receptor (IL-2R)[5,7], which have immuno-regulatory 

functions, indicate that genetic polymorphisms of these genes also play a role in the disease 
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susceptibility [6,7]. Additionally, some studies suggest the possibility of an infectious 

agent in initiating MS. Due to seropositivity in MS, latency and their involvement with the 

nervous system, the most commonly studied infectious agents with MS development are 

Epstein-Barr Virus (EBV) [8,9] and human herpes virus-6 (HHV-6) [10]. Some of these 

infectious agents showed a significant association with MS and correlation in the 

development of MS attacks [11], yet no defined infectious agent has been proven to cause 

the disease, directly.   

Signs and Symptoms  

     MS is a heterogeneous disease, as the clinical presentation varies between patients [1,2]. 

The clinical picture of MS chiefly depends on the site of the brain lesions, the type of the 

affected neuron and the degree of demyelination [1,2]. However, the optic, motor and 

sensory neurons are the most affected neurons [2]. MS symptoms include general fatigue, 

walking difficulties, numbness, spasticity, muscle weakness, blurry vision, bladder 

dysfunction, bowel problems and depression [12,13]. 

     MS is classified into four types based on the clinical progression of the disease. The 

most common type is the relapsing-remitting (RR) MS, characterized by periods of attacks 

followed by periods of complete recovery.  Relapsing-remitting disease is typically 

followed by secondary-progressive (SP) MS within 5-10 years of diagnosis. SP-MS is 

characterized by periods of attacks, but incomplete recovery. Primary-progressive (PP) 

MS, on the other hand, has no remission phase and is characterized by continuous increase 

in MS severity. The rare form of MS is called progressive-relapsing (PR) MS, which has a 

continuous increase of disease severity with some occasional attacks [1,13].  
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Diagnosis 

     MS diagnosis is challenging due to lack of specific markers that distinguish MS from 

other diseases. However, diagnosis is possible based on the unique clinical presentation, 

the presence of oligoclonal band (OB) in the cerebrospinal fluid (CSF) and the visualization 

of brain or spinal cord lesions using magnetic resonance imaging (MRI) [1,2,13,14]. 

Oligoclonal bands are immunoglobulins (Igs) with different specificity to myelin and non-

myelin antigens (Ags) found within the CSF but absent from the peripheral blood. The 

presence of Igs in the CSF is an indicative of intrathecal production, and it was found that 

the level of these antibodies (Ab) is positively correlated with the disease progression [15]. 

Additionally, the number of brain lesions is positively correlated with the disease disability.  

MS Pathology 

     MS pathology is not fully elucidated. However, it is accepted that the immune response 

drives the pathology. The inflammatory immune response in MS is triggered by complex 

interaction of an unknown agent and genetic susceptibility. Although the etiology is still 

unknown, it is accepted that the pathology is generated in three crucial steps; activation of 

T cells in the periphery, infiltration of immune cells into the CNS and demyelination [1,2].  

Naïve CD4+ T Cell Activation  

     It is accepted that the activation of auto-reactive CD4+ T cells is the driving force in 

initiating MS pathology. The activation of these cells is not fully understood. It was 

suggested that in the peripheral blood, antigen presenting cells (APC) uptake foreign 

microbial antigen for processing and present an epitope to naïve CD4+ T lymphocytes. The 

presented epitope might share some structural similarities with myelin antigens that lead 

to the generation of auto-reactive CD4+ T lymphocytes. This hypothesis is called 
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“molecular mimicry” and it suggests the possible cross-reactivity in the immune response 

between self- and non-self Ags post infection [16].  Fujinami et al. showed that Hepatitis 

B Virus Polymerase (HBVP), a hepatitis virus protein, shares some sequence similarities 

with the major myelin protein, myelin basic protein (MBP), and is capable of inducing 

autoimmunity in rabbits similar to MS. The production of Abs that are reactive both to the 

HBVP and MBP and the histological picture of the rabbit brains with the mononuclear cell 

infiltration supported this hypothesis [17]. The hypothesis of molecular mimicry is not 

restricted to viruses as potential activators of T cells. A study by Wucherpfennig et al. 

investigated possible stimuli for T cell receptor (TCR) of MBP-specific T cells derived 

from MS patients. In their study, they showed that peptides from Pseudomonas aeruginosa 

and influenza type A virus stimulate clonal expansion of T cells similarly to MBP85-99 

peptide [18]. Recent work by Hughes et al. showed that bacteria such as Pseudomonas 

aeruginosa and Acinetobacter sp. share some structural similarities with myelin 

components. This was further supported as serum derived from MS patients reacted to the 

peptide sequences of both myelin and bacteria [19]. These studies introduce possible 

triggers either viral or bacterial in MS initiation; however, the exact etiology is still to be 

investigated. 

     Another hypothesis for the activation of naïve CD4+ T lymphocytes is called 

“Bystander Activation”. This hypothesis suggests that a pathogen-specific inflammatory 

response might initiate an unrelated autoimmune response [20].  Sensitization of the 

immune system with a microbe activates innate immune cells or APCs that are capable of 

activating auto-reactive T cells, hence inducing autoimmunity. Moreover, microbial 

activation of the immune response might lead to direct damage without activation of auto-
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reactive T lymphocytes, due to the release of inflammatory substances such as nitric oxide 

(NO) [21] or pro-inflammatory cytokines [22]. This is called “Bystander killing” in which 

the immune response is mounted against infected cells, however un-infected cells might be 

destroyed as well [20]. McCoy et al. suggested that MS pathology might be induced by a 

combination of both “Molecular Mimicry” and “Bystander Activation”. They speculated 

that a microbe or microbial peptide mimicking one of myelin components prime CD4+ T 

cells, however an irrelevant infection is crucial in driving the pathology by releasing pro-

inflammatory cytokines [23]. Although many studies showed that the clinical and 

histopathological picture of MS could be generated based on these hypotheses, further 

studies are needed to support their roles in MS initiation. 

CNS Immune Infiltration 

     Once activated in the periphery, auto-reactive CD4+ T cells migrate to the CNS by 

crossing the blood-brain barrier (BBB). The CNS is a restricted site [24] in which the 

vascular structure of the BBB separates circulating blood from the CNS, and permits the 

entry of nutrients and only limited immune components. The BBB consists of an 

endothelial lining supported with astrocytes, pericytes and microglia cells [25]. Damage to 

the BBB integrity aids in immune cell infiltration to the CNS. The cause of BBB damage 

is not fully known, however, secreted pro-inflammatory cytokines, chemokines and matrix 

metalloproteinase enzymes (MMP) may affect the cellular junctions of the BBB [26]. 

     Auto-reactive CD4+ T cells circulate in the periphery and slow their movement when 

they reach the BBB [27]. Selectin molecules on the CD4+ T cells bind to their ligands 

expressed by the endothelial lining, which tether auto-reactive T cells to the BBB [27, 28, 

29]. Tethered lymphocytes roll on the endothelial lining of the BBB [27]. Furthermore, 
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CD4+ T cell express integrin molecules [30, 31] such as alpha 4 beta 1 (α4 β1) integrin or 

very late activation antigen-4 (VLA-4) and lymphocyte function associated antigen-1 

(LFA-1). These molecules bind T cells to intercellular adhesion (ICAM-1) and vascular 

cell adhesion (VCAM-1) molecules on the BBB, respectively [32]. Adhesion of 

lymphocytes to the BBB lining facilitates extravasation of these cells to the CNS [27, 30]. 

The expression of endothelial cell adhesion molecules (ECAM) is enhanced with the 

exposure to pro-inflammatory cytokines, thus facilitating immune infiltration to the CNS. 

An increase in VCAM-1 and ICAM-1 expression was observed in MS patients and was 

positively correlated with disease activity [33]. Not only do auto-reactive CD4+ T cells 

cross the BBB, but also B-lymphocytes and innate immune cells such as natural killer cells, 

monocytes and dendritic cells [27].  

Generation of an Immune Response 

     The type of the inflammatory immune response generated depends on the cellular 

signaling of cytokines. Additionally, the type of the immune response generated determines 

the extent of pathology, hence clinical symptoms. Many immune responses had been 

described in MS pathology, among those are: 

 T 1 Helper Immune Response (Th1) 

     Interferon gamma (INF- γ) secreted by microglia and interleukin (IL)-12 induces 

the initiation of Th1 immune response. Th1 immune response is characterized by the 

production of pro-inflammatory cytokines such as INF-γ and tumor necrosis factor-

alpha (TNF-α) and chemokines. In addition, Th1 immune response activates 

macrophages and recruits more immune cells to the site of inflammation. It is accepted 

that MS pathology is mediated by a Th1 immune response [1,2].  



www.manaraa.com

  

 

7 

 T 17 Helper Immune Response (Th17) 

     Recently, Th17 immune response was described to be a major contributor in MS 

pathogenesis. Signaling of IL-23 [34] and transforming growth factor-beta (TGF-β) 

[35] and IL-6 initiate a Th17 response by up-regulating the expression of the 

transcription factor retinoid-related orphan receptor gamma t  (ROR-γt) [36]. This pro-

inflammatory T helper lineage is characterized by the production of the pro-

inflammatory cytokines IL- 17, IL-21 and IL-22. It is accepted that MS pathogenesis 

is mediated by a Th1/Th17 paradigm [1,2]. 

 T 2 Helper Immune Response (Th2) 

     IL-4 signaling induces a Th2 immune response. This immune response is considered 

beneficial as it ameliorates the inflammation through the secretion of anti-inflammatory 

cytokines such as IL-10 and IL-4. However, a Th2 immune response also leads to the 

activation of B cells into plasma cells and isotype class switching, leading to the 

production of antibodies implicated in demyelination [1, 37, 38, 39].  

Demyelination  

     MS is characterized by demyelination mediated by an immune response. Auto-reactive 

T cells recognize myelin Ags presented by APC through MHC class II (MHC-II) molecules 

to specific TCR. These myelin Ags are derived from the myelin sheath on axons or 

oligodendrocytes, myelin producing cells [1]. Additionally, T cells activate macrophages 

leading to myelin phagocytosis, hence myelin damage. The pro-inflammatory cytokines 

and NO produced also contribute to myelin and oligodendrocyte damage. Moreover, 

myelin specific-Abs opsonize myelin Ags that further enhance phagocytosis [40] or 
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activate the complement cascade [41] as observed in studies in animal models of MS. 

Demyelination forms the characteristic perivascular plaques located within the white 

matter that can be observed with the use of MRI [1]. However, cellular trafficking to the 

CNS result in highly inflamed meninges. This inflammatory infusion leads, in part, to the 

formation of cortical grey matter plaques in some MS cases [42]. 

     Initially, the immune response is directed against one component of the myelin sheath. 

Activated cells secrete pro-inflammatory cytokines and chemokines, to activate more 

immune cells and recruit them to the CNS, respectively. The damage to myelin reveals 

more of its Ag that lead to the initiation of other immune responses with different target 

Ags. The subsequent generation of immune responses against other myelin components is 

called “epitope spreading”. Epitope spreading is thought to be responsible for enhancing 

demyelination and worsening the clinical presentation of MS.  

Axonal Loss 

     The role of myelin is to protect neurons and facilitate the transmission of the nerve 

impulses. In MS, demyelination exposes neurons to an inflammatory environment 

containing pro-inflammatory cytokines and NO. Re-myelination may occur, in the 

remitting forms of MS, however the produced myelin is thinner. Chronic demyelination 

leads to neural transection or the separation of the distal end of the neuron, which prevents 

the transmission of nerve impulses. This is followed by the formation of “end bulb” 

structure and eventual neural degeneration [43].  

Gliosis 

     Gliosis or scarring is a tissue death that results from plaque formation. These scars result 

from the reactive changes in one of the CNS glial cells such as microglia, astrocytes and 
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oligodendrocytes in response to demyelination. Demyelination leads to axonal damage and 

forms plaques. However, pathological destruction of the myelin sheath varies between 

patients depending on the immunological players employed. Therefore, MS plaques are 

classified based on their content of immune cells and other immune-related proteins. There 

are four types of plaques, each with distinct immune composition indicating different types 

of pathogenesis. Both type I and type II plaques are characterized by damaged BBB, hence 

the plaques are perivascular in location. Additionally, both types are characterized by a 

predominant presence of T cells and macrophages and the preservation of 

oligodendrocytes. However, Type II plaques have more Abs and complement, indicating 

their possible role in demyelination in this type. Type III plaques are similar in composition 

to type I and type II. However, oligodendrocytes are damaged, and the brain scarring is 

more diffuse rather than being limited to the perivascular areas. Similarly, type IV is 

characterized by the presence of T cells and macrophages. However, more 

oligodendrocytes are lost with minimum changes in myelin components [44]. How these 

different histopathologic pictures relate to the clinical presentation of MS is still under 

investigation. 

Immune Regulation  

     The immune response is regulated through the function of regulatory or suppressor cells 

such as myeloid-derived suppressor cells (MDSC), regulatory B (Breg) cells and regulatory 

T (Treg) cells [45]. It is accepted that the adaptive immune response involves the 

recruitment of both effector and regulatory immune cells to properly control the immune 

response and maintain self-tolerance [46]. Regulatory cells control the immune response 

through their suppressive activity either by direct cell-cell contact or by secreting anti-
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inflammatory cytokines [47]. It was suggested that the immune regulation in MS is 

impaired either due to lower number of regulatory cells or to impairment in their activity.  

 MDSC 

     The myeloid derived suppressor cell population consists of immature myeloid cells 

with blocked differentiation. Their role in suppressing the immune response is still to 

be fully elucidated. However, it was suggested that upon activation they express their 

suppressive activity by direct cell contact, production of suppressive factors, or by 

interacting with regulatory T cells. Due to their immaturity, they lack the expression of 

mature myeloid cell markers [48]. Based on their cellular markers, they are divided into 

two subpopulations; monocytic and granulocytic MDSCs. Monocytic MDSCs (M-

MDSC) are defined as CD11b+ CD14- CD33+ cells while granulocytic MDSCs (G-

MDSC) are defined as CD11b+ CD15+ CD33+ cells [48, 49]. The role of each subset of 

MDSCs in regulating myelin-specific T cells in MS patients is still under investigation. 

The role of MDSCs in the animal model of MS is discussed below. 

 Breg cells 

     The Breg cell population is a subset of B cell lineage with suppressive functions. 

The discovery of Breg cells is recent. Thus, their exact phenotype and mechanisms of 

suppression are still under investigation. Most of the discovered Breg cells are IL-10 

producers. Thus, they are referred to as B10 cells [50]. However, non-IL-10 Breg cells 

may also exist. A study by Mauri et al. showed that the human Breg cell population is 

phenotypically defined as CD19+ CD24hi CD38hi cells with the ability to produce IL-

10 upon stimulation in healthy individuals [51]. Moreover, a study by Iwata et al. to 
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identify B10 cells in human showed that IL-10 producing subset of B cells is 

phenotypically defined as CD24hi CD27+ B cells. In their study, they showed that B10 

cells might also express CD48 and CD148, characteristic markers of cell activation and 

cell memory, respectively [52]. In addition to IL-10 production, a subset of Breg cells 

produce TGF- β to regulate inflammation [53]. Lack of unique cellular markers 

introduces necessities to characterize the Breg cell population along with their 

suppressive activities.   

 Treg cells 

     Treg cell development may occur in the thymus or the periphery yielding the 

production of thymic-derived or natural Treg (nTreg) and induced Treg (iTreg) cell 

populations, respectively [54]. Some of Treg cells express Forkhead Box Protein P3 

(FoxP3) or Scurfin, a transcription factor that is important for the development of Tregs 

and in maintaining their suppressive activity [54, 55, 56]. This transcription factor is 

expressed in the majority of Treg population; however, it is not an exclusive cellular 

marker [57]. Additionally, it is known that IL-2 is important for maintaining FoxP3 

expression and that naïve T cells can differentiate into FoxP3+ Treg cells in a TGF-β-

dependent manner. However, TGF-β and IL-6 signaling facilitate the differentiation of 

naïve T cells into Th17 cells, which mediates a strong pro-inflammatory immune 

response [46]. 

    The mechanism by which Treg cells control the immune response is not fully 

understood. However, they may regulate the immune response by direct cell-cell 

contact or through the secretion of anti-inflammatory cytokines such as TGF-β, IL-10 

or IL-35. Recent data suggest that immune regulation in MS is altered which may 
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contribute to the disease susceptibility. Studies by Putheti et al. showed that there is no 

significant difference in the number of peripheral CD4+ CD25+ Treg cells between 

MS patients and healthy controls [58]. However, studies by Huan et al. showed that 

there is a decrease in FoxP3 expression in Treg cells derived from MS patients as 

compared to healthy controls [59]. This suggests that the development of Treg cell 

population in MS patients might be impaired, hence affecting their suppressive activity. 

In vitro studies by Viglietta et al. Hass et al. and Kumar et al. showed that MS derived 

Treg cells showed impairment in their suppressive activity towards myelin specific 

auto-reactive T cells [60, 61, 62]. The role of CD8+ Treg cells in suppressing MS was 

also described. Crucian et al. showed that there is a decrease in CD8+ CD25- Treg cells 

in the peripheral blood of MS patients [63]. Additionally, Frisullo et al. showed that 

there is a decrease in CD8+ FoxP3+ Treg cells during the relapsing phase of MS and a 

normal level during the remitting phase [64]. These data support the role of CD8+ Treg 

cells in suppressing MS pathology. 

Experimental Autoimmune Encephalomyelitis as an Animal Model of MS 

     Representing MS using a single model is challenging as the etiology of MS is still 

unknown and the clinical picture and disease severity varies between patients [1].   The 

primary animal model used to study different aspects of MS pathogenesis is experimental 

autoimmune encephalomyelitis (EAE) [1, 65]. Historically, EAE was induced in a variety 

of animals including rabbits, guinea pigs and in nonhuman primates like marmoset 

(Rhesus) monkeys. However, the most commonly used animals are rats and mice due to 

their smaller size and the availability of genetically altered species [65]. 
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     The introduction of self-Ag or auto-reactive T cells to naïve animals is sufficient to 

induce inflammatory response with a histopathological and clinical picture similar to MS 

[1]. Specifically, EAE is induced by active immunization of one of the myelin proteins: 

myelin oligodendrocyte glycoprotein (MOG), MBP or proteolipid protein (PLP) 

emulsified in complete Freund`s adjuvant (CFA) [65, 66, 67].  This type of immunization 

also requires the injection of two doses of Pertussis Toxin (PT) [67]. In addition, the 

adoptive transfer of encephalitogenic T cells specific to one of the myelin proteins also 

induces EAE in naïve animals [67]. However, EAE shows heterogeneity in the immune 

response, clinical symptoms and disease progression depending on the myelin peptide 

used, the animal’s genetic susceptibility and its species [1, 67]. Therefore, the 

immunological process under investigation determines the immunization protocol and the 

animal strain used to induce EAE [67]. For instance, immunizing C57BL/6 mice with 

MOG35-55 induces a chronic progressive EAE while immunizing SJL mice with PLP139-151 

result in a relapsing remitting EAE [68]. 

EAE Immunopathology 

     The inflammatory response initiated with the immunization drives the pathology of 

EAE. Thus, studying EAE provides insight to the possible immune players in MS 

pathology. Ben-Nun et al. showed that EAE is T cell mediated disease by inducing EAE 

upon the passive transfer of MBP-specific T cells [69]. Further studies of the involvement 

of T cells in MS pathology supported their pathogenic role. It is accepted that Th1 and 

Th17 immune responses contribute the most to EAE pathology. Th2 immune response, on 

the other hand, is involved with the activation of B cells. The role of B cells and Abs in 
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EAE pathology is still under debate [1]. However, recent data suggest that B cells and Abs 

play protective [70] and pathogenic roles [71] in EAE/MS pathogenesis.  

     The protective role of B cells is supported by the function of regulatory B cells (B10 

cells) that were found to suppress clinical symptoms during recovery periods of MS [71]. 

Data by Wolf et al supported the role of regulatory B cells during the recovery period of 

EAE by immunizing B10.PL mice with MBPAC1-11 [72]. However, Dittel et al. immunized 

B10 X SJL/J mice with the same peptide and failed to support the protective role of 

regulatory B cells [73]. This variability in the results might be due to the different animal 

strains used. Moreover, Zhong et al. showed that follicular B (B2) cells induce the 

generation of iTreg cells from CD4+ FoxP3- T cells derived from FoxP3-GFP knock in 

C57BL/6 mice in vitro upon the addition of IL-10 and TGF- β. [74]. Additionally, Lyons 

et al. showed that B cells ameliorate EAE by limiting epitope spreading in BALB/c mice 

immunized with PLP. This was supported as T cells isolated from B cell-/- mice and 

cultured with different PLP peptides showed an increase in the production of pro-

inflammatory cytokines such as IFN-γ and TNF-α [75]. Aside from the current data present 

in the literature, the protective role of B cells and the mechanism of EAE regulation are 

still under investigation.  

     In contrast, Willenborg et al. first supported the pathogenic role of B cells by depleting 

B cells in rats using an anti-rat antiserum treatment therapy. In their study, the rats were 

resistant to EAE induction both with whole spinal cord homogenate immunization and with 

purified MBP. However, T cell function was intact. The failure of EAE induction in these 

rats was thought to be due to the lack of B cell-T cell interaction or the lack of Ab secretion 

[76]. A recent study by Mannara et al. showed that B cells contribute to neurological 
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inflammation in EAE induced by a passive transfer of auto-reactive T cells in C57BL/6J 

mice. They supported the pathogenic role of B cells in demyelination as B cells secreting 

Abs were localized in brain and spinal cord lesions [77]. Beside Ab secretion, B cells may 

contribute to EAE/MS pathology through Ag processing and presentation, cytokine 

production or secretion of chemoattractant agents [78]. Though, their exact pathological 

roles remain elusive.  

     Appreciation of the pathological role of B cells resulted in the development of 

monoclonal Ab called Rituximab®. This therapy depletes mature B cells by blocking CD20 

cell molecule. The success of B cell depletion therapy in ameliorating the clinical 

symptoms in EAE/MS further support the of B cells in EAE/MS pathogenesis [1,2]. 

However, depletion therapy does not target plasma cells, thus the level of auto-Ab remains 

intact [1,79].  

     Similar to B cells, the role of Abs in EAE pathology remains unknown. However, their 

pathological role is more accepted. Abs may damage the myelin sheath and 

oligodendrocytes by activating the complement cascade or opsonizing myelin Ags for 

phagocytosis. Linington et al. supported the pathogenic role of Abs in demyelination, as 

the clinical severity and lesion formation were increased upon the administration of 

monoclonal anti-MOG Abs in a passive transfer model of EAE in Lewis rats [80]. Urich 

et al. showed that Ab-dependent demyelination is mediated by activating the complement 

cascade [81].  However, Piddlesden et al. showed that Ab-mediated demyelination is 

independent of activating complement [82]. An in vitro study by Van der Goes et al. 

supported the involvement of auto-Abs in demyelination. They showed that anti-MOG Ab 

enhance phagocytosis by macrophages by increasing the level of MOG opsonization [83]. 
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Moreover, another in vitro experiment by Sommer et al. showed that the addition of 

myelin-specific Abs isolated from CSF of immunized rabbit to macrophage culture 

enhance the phagocytosis of myelin Ags. The phagocytic activity was positively correlated 

to the amount of anti-myelin Abs administered [84].  

     The possible protective role of Abs remains undefined. MacPhee et al. studied the 

recovery period of EAE in Lewis rats immunized with MBP. They investigated the possible 

effect of serum-derived factor in suppressing EAE and found a positive correlation between 

anti-MBP Ab level and EAE suppression [85].  Additionally, Hughes et al. supported a 

possible protective effect of Abs in the protection against EAE. In this study, rats were 

treated with guinea pig spinal cord antisera pre- and post-immunization. Hughes showed 

that anti-CNS Ab treatment reduced the clinical score of EAE [86]. Recently, Bieber et al. 

described a polyclonal IgM with high affinity to oligodendrocyte epitopes that are capable 

of promoting myelin repair in a viral model of MS [87].  

     The contradictions in these results emphasize a role of Abs in EAE pathology; either 

protective or pathogenic. However, the involvement of Abs in EAE pathology is still to be 

elucidated. 

EAE Immunoregulation  

     It was suggested that autoimmunity is caused by a lack or impairment in the regulation 

of the inflammatory response rather than over sensitization of the immune system.  Thus, 

enormous effort has been made to clarify the cellular and humoral components in immune 

regulation. Based on EAE studies, it is suggested that MS might result from loss of 

tolerance to self-Ag caused by impaired regulation of inflammation. The main regulatory 

cells include Breg cells, MDSC and Treg cells.  
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 Breg Cells 

     Matsushita et al. showed that B cell depletion before EAE induction exacerbates 

EAE clinical course as a result of depleting CD1hiCD5+ Breg cells. These Breg cells 

ameliorate EAE symptoms by secreting anti-inflammatory cytokines such as IL-10. 

However, B cell depletion therapy post EAE induction was found beneficial in 

subsiding the symptoms [70]. Ray et al., on the other hand, showed that Breg regulatory 

function is independent of IL-10 secretion but depends on maintaining the number of 

Treg cells balanced. In their study, they showed that B cells contribute to EAE recovery 

by enhancing Treg cell proliferation and that this function is dependent on the 

expression of glucocorticoid-induced tumor necrosis factor receptor (GITR) by B cells 

[88]. 

 MDSCs 

     Murine MDSCs express CD11b and Gr-1 molecules. Granulocytic and monocytic 

MDSCs are characterized by the expression of Ly-6C and Ly-6G, respectively.  Thus, 

G-MDSCs have a CD11b+ Ly-6G+ Ly-6Clo phenotype while M-MDSCs have a CD11b+ 

Ly-6Chi Ly-6G- phenotype [48]. The suppressive activity of MDSCs in EAE is still 

under investigation. Ioannou et al. showed that G-MDSCs suppress the immune 

response in EAE by activating programed cell death in auto-reactive Th1 and Th17 

immune cells [89]. However, Yi et al. showed that MDSCs promote the differentiation 

of naïve CD4+ T cells into Th17 cells and increase EAE severity [90].  
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 Treg Cells 

     Murine Treg cells also express FoxP3 transcription factor. Treg cells may regulate 

EAE by the secretion of anti-inflammatory cytokines such as IL-10, TGF-β and IL-35 

[91]. Additionally, Treg cells may induce suppression by direct cell-cell contact. The 

role of those anti-inflammatory cytokines in ameliorating EAE is based on their effect 

in limiting the activation and the proliferation of CD4+ T cells towards Th1 and Th17 

immune cells. Those anti-inflammatory cytokines direct the immune response towards 

an immuno-suppressive immune response that results in immunological balance.  

Podojil et al. studied the effect of blocking B7-H4, a co-stimulatory molecule, on EAE. 

They found that blocking this co-stimulatory molecule inhibits CD4+ T cell 

differentiation into Th1 and Th17 cells. This was correlated with EAE amelioration and 

was dependent on Treg cell expansion and IL-10 production [92]. Chen et al. described 

the role of TGF- β in suppressing EAE. In their study, they characterized the regulatory 

cell population as CD8+ that express latency associated peptide (LAP). The adoptive 

transfer of this population ameliorated EAE in a TGF-β dependent manner. 

Additionally, in vivo blocking of TGF-β worsened EAE, thus supporting its role in 

regulating the immune response [93]. The role of IL-35 in ameliorating EAE is not 

fully elucidated; however, it is suggested that IL-35 inhibits CD4+ T cell proliferation 

[94]. It was accepted that IL-35 is a novel cytokine of Treg cells; however, recent 

studies showed that plasma cells also secrete IL-35 and contribute to immune 

regulation [95]. 

     These studies showed the efficacy of Treg cell population in controlling the 

autoimmunity seen in EAE. Kohm et al. showed that CD4+ Treg cells suppress MOG35-
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55 induced EAE by switching the immune response towards anti-inflammatory Th2 

immune response [91]. Moreover, Nishibori et al. showed that impairment in the 

development of CD4+ CD25+ Treg cells worsen the disease progression in MBP 

induced EAE [96]. However, the exact mechanisms of EAE regulation by CD4+ Treg 

cells are still under study.  

     The role of CD8+ Treg cells in EAE amelioration is being investigated. Chen et al. 

showed that CD8+ Treg cell population expressing LAP regulates EAE in TGF-β and 

IFN-γ mediated manner. They showed that these cells may express FoxP3 or CD25 and 

that the passive transfer of CD8+ Treg cells induces the expansion of FoxP3+ cell 

population and suppresses EAE [93]. Moreover, Lee et al. identified a CD8+ CD122+ 

Treg cell population and supported its ability to suppress EAE. Depleting CD8+ 

CD122+ Treg cells supported the suppressive ability of this population. CD122 

depletion resulted in increased T cell infiltration and cytokine production. The passive 

transfer of CD8+ CD122+ Treg cells, on the other hand, reduced EAE severity [97]. 

B Cell Dependent and B Cell Independent EAE Models 

     The role of B cells in EAE is dependent on the animal model used. Our laboratory 

previously described B-cell-dependent and B-cell-independent models of disease using the 

C57BL/6 mice strain [98, 99]. The B-cell-independent model is induced by active 

immunization with the encephalitogenic MOG35-55 peptide. In this model, B cells do not 

contribute to EAE pathogenesis, as both wild-type (WT) and B cell deficient (B-/-) mice 

were equally susceptible to EAE induction [98, 99]. B cell dependent EAE is induced by 

active immunization with recombinant human myelin oligodendrocyte glycoprotein 

(rMOG) peptide. This peptide contains an extracellular human MOG peptide sequence 
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(amino acid 1-121), encompassing the encephalitogenic MOG35-55 peptide. In this model, 

B cell-/- mice were resistant to rMOG-induced EAE compared to WT mice. Therefore, B 

cells or antibody have a role in the pathogenesis of rMOG-induced EAE. In this model, the 

resistance to EAE induction in B cell-/- mice may be due to the difference in antigen 

processing and presentation leading to different immunological response or due to the lack 

of antigen opsonization by Abs. Moreover, passive transfer of rMOG-primed serum and B 

cells into B cell-/- mice previously immunized with rMOG results in clinical EAE in 

recipient mice [98, 99].  

     Using peptide-mapping analysis (Figure I) Lyons et al. revealed an epitope, myelin 

oligodendrocyte glycoprotein 61-85 (MOG61-85), to which rMOG immunized B-/- mice 

responded to but not WT mice (Lyons et al., unpublished data). These data indicate that 

MOG61-85 peptide might be responsible for EAE resistance seen when B cell-/- mice are 

immunized with rMOG. 

 

Figure I: Peptide Mapping Analysis using LN isolated from rMOG immunized B cell-/- and 

WT C57BL/6 mice (Lyons et al., unpublished data). In this experiment T cells were cultured with 
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a panel of MOG peptides spanning the length of rMOG. Both B cell-/- and WT- derived T cells 

responded to the encephalitogenic epitope MOG31-55. However, B cell-/- -derived T cells responded 

to MOG61-85.  

 

      Additionally, co-immunization of B-cell-independent model with MOG61-85 induces 

ameliorated form of EAE (Figure II). This supports the protective effect of MOG61-85 peptide in 

suppressing EAE. Subsequent data suggested that MOG61-85 induces a population of CD4+ CD25+ 

T cells (Figure III). Therefore, MOG61-85 might be a cryptic epitope that when presented ameliorates 

EAE severity by generating a regulatory cell population. Also, this cryptic epitope might be the 

cause of the resistance in EAE induction when B cell-/- mice immunized with rMOG. Thus, 

antibodies specific to rMOG may play a role in EAE pathogenesis by means of epitope selection 

that results in clonal expansion of specific CD4+ T cell repertoires. 

Figure II:  Co-immunization studies with MOG35-55 and MOG61-85 peptides (Lyons et 

al, unpublished data). WT and B cell-/- animals were co-immunized with the 

encephalitogenic MOG35-55 and MOG61-85 peptide and were observed for EAE induction 

and progression. WT animals co-immunized with both peptides showed a decrease in EAE 

severity when compared to the animals immunized with MOG35-55 only. Conversely B cell-

/- animals co-immunized with both peptides showed no EAE. These results effectively 

demonstrated the protective nature of the MOG61-85 peptide. 
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Figure III: Flow Cytometric Analysis to Characterize MOG61-85 Specific Cell 

Population (Agashe et al, unpublished data). Spleens were harvested from WT mice immunized 

with MOG35-55 or MOG35-85 and cultured in vitro with MOG35-55 or MOG61-85. An increase in CD3+ 
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CD4+ CD25+ T cell population was observed when the cells were primed in vivo with MOG35-85 

and cultured with MOG61-85 as compared to the cells cultured with MOG35-55. 

 

     To further investigate the mechanism of suppression by MOG61-85, a longer peptide MOG35-85 

encompassing both the encephalitogenic MOG35-55 epitope and the protective MOG61-85 was 

synthesized. Immunization of WT mice with the longer peptide resulted in less severe EAE than 

immunization with the MOG35-55 peptide (Figure IV). The role of IL-10 as an anti-inflammatory 

cytokine was tested with immunization of IL-10 deficient (IL-10-/-) mice on the B6 background. 

Results indicated that amelioration of disease was independent of IL-10 secretion (Figure IV). This 

was evident as both WT and IL-10-/- mice immunized with the longer peptide MOG35-85 showed 

low EAE clinical severity as compared to WT and IL-10-/- mice immunized with the 

encephalitogenic short peptide MOG35-55. 

  

 

 

 

 

 

 

 

Figure IV: EAE severity in WT and IL-10-/- mice immunized with MOG35-55 and 

MOG35-85 (Agashe et al, unpublished data). WT and IL-10-/- mice were immunized with 

the appropriate peptide and were observed for a period of 29 days for EAE induction and 

progression. WT and IL-10-/- mice, immunized with MOG35-55 exhibited EAE induction 
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and progression. Moreover, WT and IL-10-/- mice immunized with MOG35-85 (to observe 

MOG61-85 peptide) exhibited low EAE severity as compared to the group of animals 

immunized with MOG35-55. However, this degree of severity was found to be similar in 

WT and IL-10-/- mice, indicating that IL-10 may not play a role in protection from observed 

with MOG61-85. 

 

     Our previous data of EAE resistance in the B-cell-dependent model and the amelioration of EAE 

severity with the co-immunization of MOG61-85 lead to the central hypothesis addressed herein.  

Hypothesis 

     Previous work identified two EAE models; B-cell-dependent and B-cell-independent models. 

Data from peptide mapping analysis from B-cell-independent model showed a response towards 

MOG61-85 peptide. Further experiments suggested that an immune response to MOG61-85 protected 

B-/- mice from rMOG-induced EAE and was able to ameliorate MOG35-55-induced EAE. 

Furthermore, previous experiments indicated that this protection to be mediated by the induction 

of a regulatory T cell population based on observing an increase in CD4+ CD25+ T cell population. 

EAE amelioration by MOG61-85 peptide was shown to be independent of IL-10 secretion.  

     The experiments described herein further investigated the protective effect of MOG61-85 in EAE 

amelioration in rMOG immunized C57BL/6 mice and in mice co-immunized with MOG35-55 and 

MOG61-85. Therefore, we hypothesized that regulatory T cells specific for MOG61-85 suppress the 

activation of pathogenic MOG35-55 T cells in EAE in B-/- C57BL/6 mice through the secretion of 

TGF-β. This hypothesis was addressed by investigating the following Specific Aims. 

Specific Aims 

I. Specific aim I: Phenotypic characterization of MOG61-85 specific regulatory cell 

population. Our working hypothesis was that the MOG61-85-specific T regulatory cell is a CD4+ 

CD25+ FoxP3+ Treg cell population, and it regulates the pathogenic activity of MOG35-55-

specific CD4+ T cell population. This aim was tested by co-immunizing B cell-/- C57BL/6 mice 

with both the encephalitogenic MOG35-55 and the protective MOG61-85 peptides. Mice were 
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followed for EAE clinical progression and the Treg population was characterized using cells 

derived from spleens and lymph nodes and cultured in vitro with MOG61-85 peptide. Phenotypic 

characterization of MOG61-85 specific Treg was performed using Flow Cytometry. 

II. Specific aim II: Determine the mechanism controlling the suppressive activity of MOG61-

85-specific regulatory cell population. Our working hypothesis was that the MOG61-85 Treg 

cell population ameliorates EAE through the secretion of TGF-β. This aim was tested by 

immunizing WT and IL-10-/- C57BL/6 mice with rMOG protein. Mice were followed for EAE 

induction and progression. Then, lymph nodes and spleen cells harvested from rMOG-

immunized mice were used for in vitro study. In this study, cells were cultured with MOG61-85 

peptide. The working hypothesis was tested by measuring TGF-β level in the culture 

supernatants by enzyme linked immunosrbent assay (ELISA). 
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CHAPTER II: MATERIALS AND METHODS 

Mice 

     Pathogen-free female WT, B cell-/- and IL-10-/- C57BL/6 mice aged 6-8 weeks were 

used for these experiments. All mice were bred from the breeding pairs purchased from 

Jackson Laboratories (Bar Harbor, ME). All mice were housed in micro-isolator cages in 

an animal facility accredited by an Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC) on the University of Wisconsin-Milwaukee campus. 

Mice were maintained on a 12-hour light/dark schedule and provided food and water ad 

libitum. 

Antigens 

     Commercially available myelin oligodendrocyte glucoprotein 35-55 (MOG35-55) 

(MEVGWYRSPFSRVVHLYRNGK) and myelin oligodendrocyte glucoprotein 61-85 

peptides (MOG61-85) (QAPEYRGRTELLKDAIGEGKVTLRI) (GenScript, Piscataway, 

NJ) were used for these experiments. The recombinant human myelin oligodendrocyte 

glucoprotein rMOG (amino acid 1-121), was produced in collaboration with Dr. Nancy 

Monson from a baculovirus-expressed construct. 

Immunizations 

     The emulsion was prepared by mixing 100 or 200 micrograms (µg) MOG peptide or 

rMOG, respectively, emulsified in incomplete Freund’s Incomplete Adjuvant (IFA; MP 

Biochemicals, Solon, OH) and 200 or 300 µg Mycobacterium tuberculosis strain H37RA 

TB (Difco Laboratories, Detroit, MI) in Phosphate Buffer Solution (PBS) (Dulbecco’s 

Phosphate Buffered Saline in 1 liter deionized water) (Sigma, St. Louis, MO, USA) using 

an Omni Mixer Homogenizer mechanical mixer (Omni International, Kennesaw, GA). For 
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co-immunization studies, MOG35-55 -MOG61-85 emulsion was prepared using the same 

preparation protocol but both MOG peptides (MOG35-55 and MOG61-85) were mixed 

together. Each mouse was immunized with 0.2 milliliter (ml) of emulsion, with 0.05 ml 

subcutaneously (SC) at each flank.  

     Also, mice were injected with Pertussis Toxin (PT) (List Biological Labs, Inc., 

Campbel, CA). 300 nanogram (ng) of PT in PBS was used for these injections. All mice 

were injected intraperitoneally (IP) with 0.1 ml of PT twice; first at the day of immunization 

and then two days post immunization (dpi). 

Experimental Autoimmune Encephalomyelitis (EAE) Grading 

     Immunized mice were assessed daily for clinical signs at the beginning of the 7th day 

post immunization. Clinical signs of EAE were graded using a 0 to 5 scale as following: 

 

Grade or Level Clinical Sign 

0 No obvious clinical signs 

1 Flaccid paralysis in the tail observed as the 

mouse fail to helicopter its tail 

2 Impairment in the righting reflex observed 

as Limp tail and weakness of hind legs in 

which the animal is unable to grasp with its 

hind legs 

3 Limp tail and complete paralysis of hind 

legs 

4 Limp tail and complete hind leg and partial 

front leg paralysis 

5 Moribund or dead 
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Mice scored as 5 on the EAE scale were euthanized by carbon dioxide (CO2) and cervical 

dislocation. 

Cell Culture 

     All mice were anesthetized with 0.1 ml Ketamine-xylazine cocktail injection or by 

isoflurane inhalation (all from Midwest Veterinary Supply, Sun Prairie, WI) and sacrificed 

with cervical dislocation before sample collection. At 14 or 30 dpi, spleens (SPL) and 

lymph nodes (LN) were collected into ~ 45 ml of Hanks balanced salt solution (HBSS; 

Lonza, Walkersville, MD) and kept on ice. Organs of the same strain and immunization 

were pooled together, with LN and SPL separated. SPLs and LNs were homogenized using 

glass homogenizer and centrifuged for 10 minutes (min) at 1250 relative centrifugal force 

(RCF) at 21 oC. The supernatant was decanted and the pellet was re-suspended in HBSS 

(~10 ml). For spleen samples, 10 ml of lymphocyte separation media (LSM) (MP 

Biomedicals, LLC, Solon, OH) was added to the bottom of the tube and samples were 

centrifuged at 500 RCF and 21oC for 30 min with no break. Then the interphase layer was 

collected and was re-suspended in HBSS solution (~30 ml). Alternatively, 5 ml of red blood 

cell lysing buffer (Sigma, St. Louis, MO) was added to re-suspend the pellet and kept on 

ice for 3 min. After that, 30 ml of HBSS was added. Both LN and SPL samples were 

centrifuged again and the pellets were re-suspended in HBSS for a second wash (with ~15 

ml). Supernatants were decanted again and samples were re-suspended in HBSS for cell 

counting (LN in ~15 ml, spleens in ~30 ml).   

     The cells were counted using a Neubauer Counting Chamber (hemacytometer) and 

trypan blue 0.4% solution (MP Biomedicals, LLC, solon, OH) to check the cell viability. 

For cell counting; 90 microliter (µl) of trypan blue was mixed with 10 µl well-mixed cell 

suspension, then each side of hemacytometer was charged with 10 µl trypan blue-stained 
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cells. Cells were counted in the middle square and cell concentration was calculated using 

the following formula: 

 

Cell concentration = (number of cells counted) X (dilution factor) X (104) 

                                                                number of squares counted 

 

     Cells were cultured at 2.5 X 106 per ml (/ml) in complete Roswell Park Memorial 

Institute 1640, 1X solution (cRPMI 1640) (Mediatech, Inc, Manassas, VA).  

     Complete RPMI (cRPMI) 1640 was prepared by adding 5 ml N-2 

hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES) buffer solution (GIBCO, 

Grand Island, NY, USA), 5 ml L-glutamate (L-Glut) (2 mM) (Mediatech, Inc, Manassas, 

VA), 5 ml Sodium Pyruvate (Na pyruvate) (0.1 mM) (Cellgro, Manassas, VA, USA), 0.5 

ml 2-mercaptoethanol (2-ME) (50 mM) (Sigma-Aldrich, St. Louis, MO) and 5 ml 

Penicillin (100 U/ml) /Streptomycin (100 µg/ml) (P/S) Mediatech, Inc, Manassas, VA) to 

500 ml of RPMI 1640. 

     Cells were cultured with antigens according to the experiment. Antigens used for this 

study included: MOG35-55 (10 or 20 µg/ml), MOG61-85 (10 or 20 µg/ml), Concanavalin A 

(ConA) (Sigma-Aldrich, St. Louis, MO) (10 µg/ml). 

     Cells were cultured in 24 tissue culture test plates (Techo Plastic Products, MidSci, St. 

Louis, MO) and cultures were incubated at 37oC, 10% CO2 for three time points; 24 hours, 

72 hours and 96 hours. 
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Cell Counting-8 Assay (CCK-8) 

     This assay was performed to measure cellular proliferation to the different Ags used in 

cell culture by measuring the metabolic activity of dehydrogenase enzymes. Cell culture 

preparations were cultured in sterile 96 well cell culture plates (Techo Plastic Products, 

MidSci, St. Louis, MO) and were incubated at 37oC, 10% CO2 for the desired time 

according to the experiments. On the testing day, 10 µl of CCK-8 staining reagent (Dojindo 

Molecular Technologies, Rockville, MD, USA) was added to each well and plates were 

incubated at 37oC, 10% CO2 for 3 hours. After incubation, plates were read at 450 

nanometer (nm) wavelength using BioTek plate reader (BioTek, Winooski, VT). 

Flow Cytometric Analysis 

     Cell suspensions from cell cultures were used for phenotypic characterization by flow 

cytometry. Cells were harvested from culture and were centrifuged at 500 RCF for 3 min 

to remove the culture media. Supernatants were collected into sterile tubes and pellets were 

re-suspended in 1 ml sterile filtered Fluorescence-activated cell sorting (FACS) wash 

buffer. FACS wash buffer was prepared by mixing 970 ml PBS with 30 ml FBS and 1 gram 

(g) Sodium Azide (Sigma Chemical CO., St. Louis, MO, USA). Then, FACS wash buffer 

was filtered using vacuum filtrations system 1000 ML (Techo Plastic Products, 

Trasadingen, Switzerland). 

     Each sample was divided equally into a number of tubes for different staining. Samples 

were centrifuged at 500 RCF for 5 min and supernatant were decanted leaving ~50 µl of 

FACS buffer to re-suspend pellets. Then, 1 µl of anti-mouse CD16/CD32 or 50 µl of heat 

inactivated FBS was added and the samples were incubated on ice for 10 min or 30 min, 

respectively. After incubating the samples, 1 ml of sterile filtered FACS wash buffer was 
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added to the samples and they were centrifuged again at 500 RCF for 5 min. Supernatants 

were decanted leaving ~50 µl of FACS buffer to re-suspend pellets. Samples were stained 

with 1 µl fluorochrome-conjugated Ab (ebioscience, San Diego, CA) for different cell 

markers using the following conjugated Abs: 

 

FL1 Channel  

FITC 

FL2 Channel 

PE 

FL3 Channel 

PerCP-Cy5.5 

FL4 Channel 

APC 

CD3 CD4 CD19 CD25 

CD3 CD8  CD25 

CD3 CD25  CD4 

CD4 FoxP3 (intracellular 

marker) 

CD8a CD25 

Rat IgG2a Rat IgG2b Rat IgG2a Rat IgG2b 

 

Samples were incubated for 30 min on ice in the dark. To phenotype T cell populations we 

used CD3, CD4, CD8 and CD25 cell markers. To phenotype B cell populations we used 

the CD19 cell marker and to phenotype Treg cell populations we used CD4, CD8, CD25 

cell markers and FoxP3 intracellular marker. For the control tube we used FITC-Rat IgG2a, 

PE-Rat IgG2b, PerCP-Cy5.5-RatIgG2a and APC-Rat IgG2b isotype controls. 

After incubating, 1 ml of sterile filtered FACS wash buffer was added and samples were 

centrifuged at 3000 RCF for 5 min. Supernatants were decanted leaving ~50 µl of FACS 

buffer to re-suspend pellets and samples were washed again with 1 ml of sterile filtered 

FACS wash buffer. Samples were centrifuged at 500 RCF for 5 min and supernatant were 

decanted. Finally, 500 µl FACS wash buffer was added to the samples.  
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     When the samples were not run on the same day of preparation; samples were 

centrifuged at 3000 RCF for 5 min. Supernatants were decanted and 500 µl of 0.5% 

paraformaldehyde solution (10 ml of paraformaldehyde with 30 ml of PBS) was added. 

Samples were incubated on ice for 20 min and the centrifuged at 3000 RCF for 5 min. 

Supernatants were decanted and 1 ml of PBS was added. Samples were centrifuged at 3000 

RCF for 5 min, supernatants were decanted and 1 ml of PBS+ 0.5% FBS (49.75 ml PBS 

with 250 µl of FBS) was added. Then, samples were centrifuged at 3000 RCF for 5 min, 

supernatants were decanted and 500 µl of PBS+ 0.5% FBS was added. Samples were kept 

in the refrigerator until the day of testing.  

     For FoxP3 intracellular staining, after the last washing step, 1 ml of FoxP3 

fixation/permeabilization working solution was added to each tube and mixed using force 

vortex. The tubes were incubated at 4oC for 30 min in the dark. After incubation, 1 ml of 

1X permeabilization buffer was added to the tubes, then the tubes were centrifuged at 3000 

RCF at 21oC for 5 min. The supernatants were decanted and 100 µl of 1X permeabilization 

buffer was added to re-suspend the pellet. After that the control tubes were stained with 

Rat IgG2b isotype control and the experimental tubes were stained with FoxP3-PE 

conjugated antibody. The tubes were incubated in the dark at room temperature for 30 min. 

After incubation, 2 ml of 1X permeabilization buffer was added to all tubes and were 

centrifuged at 3000 RCF at 4- 21oC for 5 min. The supernatants were decanted and 2 ml of 

1X permeabilization buffer was added and the tubes were centrifuged again at 3000 RCF 

at 4- 21oC for 5 min. Then, the supernatants were decanted and 500 µl of flow cytometry 

staining buffer and data were collected. 
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     To prepare FoxP3 fixation/permeabilization working solution, 1 part of the FoxP3 

fixation/permeabilization concentrate was diluted with 2 parts of FoxP3 

fixation/permeabilization diluent. To prepare 1X permeabilization buffer, 20 ml of 10X 

permeabilization buffer was diluted with 180 ml deionized water.  

Cytokines levels by Enzyme-Linked Immunosorbent Assay (ELISA) 

     The culture supernatants were collected at three time points (24 hours, 48 hours, 72 

hours, 96 hours) during flow cytometry preparation and were aliquoted into 250 µl per 

tube. Cytokine level was detected according to the manufacture`s instructions using the 

Ready-Set-Go ELISA kit (ebioscience, San Diego, CA). A plate was coated with capture 

Ab in 1X coating buffer and was incubated overnight at 4o C. Then, the plate was washed 

with PBS+ 0.05 % Tween 20 (Sigma, St. Louis, MO) using ELISA washer instrument 

(BioTek, Winooski, VT). After washing the coating buffer, the plate was blocked using 1X 

assay diluent (200 μl/well) and incubated for 1 hour. After that, the standard (prepared 

according to manufacturer`s instructions, 100 μl/well) and samples (100 μl/well) were 

plated in duplicate and the plate was incubated for 2 hours. The plate was washed again. 

After that, the detection Ab was added and the plate was incubated for 1 hour. Then, the 

plate was washed. The Avidin-Horse Radish Peroxidase (Avidin-HRP) enzyme was added 

(100 μl/well) and the plate was incubated for 30 minutes.  The plate was washed again and 

the substrate solution was added (100 μl/well) and the plate was incubated for 15 minutes 

then the stop solution was added (50 μl/well) to stop the reaction. The plate was read using 

a BioTek ELISA reader at a range of 450 to 562 nm.  

     ELISA was used to measure three cytokines; IL-10, IL-6 and TGF-β. The minimum 

detection limits for these ELISA kits are the following:  
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IL-10 32 pg/ml 

TGF- β 8 pg/ml 

IL-6 4 pg/ml 

 

Samples for TGF-β detection were activated prior to loading to the ELISA plate. Samples 

were activated by adding 20 μl of hydrochloric acid (HCL) and the samples were incubated 

for 10 min at room temperature. Then, 20 μl of sodium hydroxide (NaOH) was added. 100 

μl/well of the activated sample was loaded into the plate.  

     The number of washes varies between cytokine types. The plate was washed according 

to the manufacturer’s instructions for each cytokine ELISA. 

Statistical Analysis 

     All data were analyzed using two-way analysis of variance (ANOVA) or student’s t-

test, as indicated. P <0.05 was considered significant. These data were analyzed using 

GraphPad Prism 5.0 (La Jolla, CA). Flow cytometry results were analyzed using the 

FlowJo software (Tree Star, Ashland, OR).  
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  CHAPTER III: SPECIFIC AIM I 

     Phenotypic characterization of MOG61-85 specific T regulatory cell population. 

Background 

     Previous work showed amelioration of the EAE clinical score in WT and B-/- mice co-

immunized with MOG35-55 and MOG61-85 peptides compared to mice immunized with 

MOG35-55 peptide only. The amelioration of EAE was further studied to identify MOG61-

85-specific regulatory cell populations. Preliminary data showed an increase in CD4+ 

CD25+ T cells and an increase in the CD8+ CD25- FoxP3+ T cell population in response to 

MOG35-85 immunization, suggesting the generation of a protective immune response. 

Therefore, we further investigated the MOG61-85-specific regulatory cell population 

responsible for suppressing the pathogenic MOG35-55-specific T cell population.  

Results 

A decrease in CD4+ CD25+ cell population was observed with MOG61-85 priming 

        Previous experiments showed generation of protective immunity in response to MOG61-

85 stimulation. This was evident as mice co-immunized with the encephalitogenic epitope 

MOG35-55 and the cryptic epitope MOG61-85 showed an ameliorated form of EAE (Lyons et 

al., Unpublished data). This raised the possibility that MOG61-85 induces the generation of 

an anti-inflammatory immune response by increasing the number of Treg cells. The role of 

T regulatory cells in alleviating EAE/MS pathogenesis is accepted [1, 2, 45, 46]. To further 

characterize the MOG61-85-specific T regulatory cell population, B cell-/- mice were 

immunized with MOG35-55 only or with MOG35-55 and MOG61-85 peptides. EAE induction 

and progression were monitored for 30 dpi. This study was conducted in one experiment 

and the total number of B cell-/- mice was as shown in table I. LNs were harvested 30 dpi 
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from B-/- C57BL/6 mice immunized with MOG35-55 and mice co-immunized with MOG35-

55 and MOG61-85.  Cell suspensions were stimulated in vitro with either MOG35-55 or MOG61-

85 peptides and were incubated for 48 hrs to increase cell proliferation. The cells were 

harvested at the 48 hrs time point and were prepared for flow cytometry. 

Group Mice Number of animals Peptide 

1 ♀ B cell-/- 

C57BL/6 

5 MOG35-55 

2 ♀ B cell-/- 

C57BL/6 

5 MOG35-55 and 

MOG61-85 

 

      

 

Using FlowJo software, the cell population was first gated on lymphocytes using 

forward scatter/side scatter (Figure V). Then, the cells were gated on the presence of CD4 

or CD8 to isolate T cells.  

 

 

 

 

 

Table I: Groups of mice immunized with both peptides or with MOG35-55 only.  In this 

experiment, mice received 100 μg of MOG35-55 and MOG61-85 peptides emulsified in 

complete Freund’s adjuvant containing Mycobacterium tuberculosis H37RA. 
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Figure V: The forward scatter/side scatter gate set in FlowJo software to analyze the 

Treg cell population.  LNs were harvested from B-/- mice immunized with MOG35-55 and 

MOG61-85 or MOG35-55 only. Cell suspensions were cultured in vitro with MOG35-55 or 

MOG61-85 for 48 hrs. Cells were harvested and prepared for flow cytometry. The gate was 

based on the lymphocyte size and the lack of granularity. These forward scatter/side 

scatter were further used to characterize the Treg cell population. 
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     Interestingly, the percentage of CD4+ CD25+ T cell population generated in response to 

MOG61-85 was similar between cells primed in vivo with MOG35-55 only and in cells primed 

with both MOG35-55 and MOG61-85 (0.965% and 0.595%) as shown in figure VI. 

Additionally, there was no significant difference in the cell percentage of cells stimulated 

in vitro with MOG35-55 between the two types of immunization (2.82% and 3.36%). The 

percentage of CD4+ CD25+ T cell population was decreased in cells cultured with MOG61-

85 as compared to MOG35-55. This was observed in both types of immunization; in cells 

primed in vivo with MOG35-55 only (2.82% and 0.965%) and in cells primed in vivo with 

both MOG35-55 and MOG61-85 (3.36% and 0.595%). However, the decrease was more 

evident when the cells were primed with MOG61-85 in vivo and cultured with MOG61-85 in 

vitro.  
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Figure VI : CD4+ CD25+ T cells within the forward scatter/ side scatter gate. The cells 
gated on forward scatter/ side scatter were further gated on the expression of CD4 and 

CD25 cellular markers. Similar cell percentage was noted with in vitro stimulation with 

MOG61-85 with both types of immunization. Also, a decrease in CD4+ CD25+ cell 

percentage was noted when cells were cultured with MOG61-85. 
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Figure VII: Control for the analysis of CD4+ CD25+ T cells. The cells were stained with 

isotype and species controls with fluorophores that matched the marker antibodies. The 

sample showed that there was no non-specific staining in the sample. 
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An increase in CD8+ CD25- T cell population was observed with MOG61-85 priming 

     The percentage of CD8+ CD25- T cell population generated in response to MOG61-85 in 

vitro stimulation was increased as compared to cells stimulated with MOG35-55 peptide 

(figure VIII). The increase in this population with MOG61-85 in vitro priming was observed 

with both types of in vivo priming; cells primed with MOG35-55 only (43% and 41.6%) and 

cells primed with MOG35-55 and MOG61-85 (40.6% and 39.2%). 

An increase in CD8+ CD25+T cell population was observed with MOG61-85 in vivo and 

in vitro priming 

     We also noted an increase in CD8+ CD25+ T cell population in response to MOG61-85 

priming (figure VII). The increase was observed in LN cell culture primed in vivo and in 

vitro with MOG61-85 as compared to LN cell culture primed with MOG35-55 in vivo and 

MOG61-85 in vitro (0.094% and 0.046%). As the increase in this population was dependent 

on the in vivo priming with MOG61-85, this population might be MOG61-85-specific Treg 

cell population. However, the small number of events of this population prevented the 

accurate analysis of FoxP3 expression by this population. Therefore, this population will 

be analyzed in future experiments. 
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Figure VIII: CD8+ CD25- T cells and CD8+ CD25+ T cells within the forward 

scatter/side scatter gate. The cells gated on forward scatter/side scatter were further gated 

on the expression of CD8 and CD25 cellular markers. Slight increase in the CD8+CD25- 

T cell population was observed with MOG61-85 in vitro stimulation; however, this 

increase was independent of the type of in vivo priming. Additionally, there was an 

increase in CD8+ CD25+ T cell population that was dependent on the in vivo priming 

of MOG61-85. 
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Figure IX:  Control for the analysis of CD8+ CD25- T cells and CD8+ CD25+ T cells. 

The cells were stained with isotype and species controls with fluorophores that matched 

the marker antibodies. The sample showed that there was no non-specific staining in 

the sample.  
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An increase in FoxP3 expression was observed with MOG61-85 priming. 

     Using FoxP3, a transcription factor expressed by T regulatory cells, the Treg cell 

population was characterized. Cells gated on CD4/CD25 or CD8/CD25 were analyzed for 

FoxP3 expression.  

       Gating on the CD4+ CD25+ T cell population, a decrease in FoxP3 expressing cells was 

noted with MOG61-86 in vitro stimulation as compared to MOG35-55 stimulation (figure X). 

This decrease was noted with both types of in vivo priming.  Cells primed with MOG35-55 

in vivo showed 18.9% decrease with MOG61-85 in vitro stimulation while cells primed in 

vivo with MOG35-55 and MOG61-85 showed 22.6% decrease. The significant decrease in 

FoxP3 expression observed with MOG61-85 in vitro stimulation indicates that the MOG61-

85-specific Treg cell population is not a CD4+ CD25+ FoxP3+ T cell population. 

     Gating on CD8+ CD25- T cell population, an increase in the percentage of FoxP3+ 

expressing cells was observed with MOG61-85 in vitro stimulation as compared with 

MOG35-55 stimulation. Interestingly, this increase was observed only if cells were primed 

in vivo with MOG35-55 and MOG61-85 (3.5% and 2.9%). In contrast, cells primed in vivo 

with MOG35-55 showed a decrease in the percentage of cells expressing FoxP3+ when cells 

cultured with MOG61-85 as compared to MOG35-55 (2.7% and 4.2%) (figure XI). This 

indicates that the MOG61-85-specific cell population might be CD8+ CD25- FoxP3+ Treg 

cells and that the expansion of this population is dependent on the in vivo and the in vitro 

priming with MOG61-85. However, further experiments are needed to support that MOG61-

85-specific Treg population is CD8+ Treg cell population. 
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Figure X: Percentage of CD4+ CD25+ FoxP3+ T cells. Cells gated on CD4+ CD25+ were 

analyzed for FoxP3 expression. A decrease in CD4+ CD25+ FoxP3+ T cell population 

was observed with MOG61-85 in vitro stimulation as compared with MOG35-55 

stimulation. 
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Figure XI: Percentage of CD8+ CD25- FoxP3+ T cells. Cells gated on CD8+ CD25- were 

analyzed for FoxP3 expression. An increase in CD8+ CD25- FoxP3+ T cells was observed 

with cells primed in vivo with MOG35-55 and MOG61-85 and cultured in vitro with 

MOG61-85. 
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Figure XII: Control for the analysis of FoxP3 expression of cells gated on 

lymphocytes. The cells were stained with isotype and species controls with fluorophores 

that matched FoxP3 intracellular staining antibody. The control showed that there was 

no non-specific staining in the samples. 

 

Discussion 

     This specific aim characterized the phenotype of the MOG61-85-specific T regulatory 

cell population. As previous co-immunization experiments showed ameliorated EAE, we 
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investigated the protective effect of MOG61-85 on the immune response. We hypothesized 

that MOG61-85 induces a protective immune response by generating T regulatory cell 

populations. We investigated T regulatory cell populations; CD4 and CD8 as possible 

MOG61-85-specific Treg cells.  

     To analyze Treg populations, cells were analyzed by forward and side scatter and cells 

were gated based on the lymphocyte size and the lack of granularity (figure V). Treg cell 

populations were analyzed in the gated cell population. To determine the type of Treg cells 

specific to MOG61-85 stimulation, the gated cells were analyzed using both CD4 and CD8 

T cell cellular markers. In addition to CD4 and CD8, cells were analyzed for the presence 

of the CD25 surface marker. As shown in figure VI, there was a decrease in the CD4+ 

CD25+ T cell population in response to MOG61-85 as compared to MOG35-55 in vitro 

priming. This finding contradicts previous data that showed an increase in CD4+ CD25+ T 

cell population in response to MOG61-85 stimulation. Although, the cell percentage of CD4+ 

CD25+ T cell population was comparable with MOG35-55 and MOG61-85 priming, there was 

a decrease in CD25 expression in response to MOG61-85 priming. This might suggests loss 

of suppressive activity by this population in response to MOG61-85 priming. Analysis for 

FoxP3 expression by this population as seen in figure X showed a decrease in the CD4+ 

CD25+ FoxP3+ T cell population in response to MOG61-85. Lack of an increase in the 

percentage of CD4+ CD25+ FoxP3+ T cell population in response to MOG61-85 stimulation 

indicates that MOG61-85-specific cell population might not be CD4+ CD25+ FoxP3+ Treg 

cells hypothesized in this thesis.  

      Based on the small number of animals used in this experiment, the MOG61-85-specific 

Treg cell population might still be CD4+ CD25+ FoxP3+ Treg cells. This population might 
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have expanded with the in vivo or in vitro priming, however the small number of animals 

used might interfere with their identification. Additionally, as the in vitro culturing 

requirements for this population are still not exactly described, this population might be 

lost with in vitro culturing or during the preparation for flow cytometry.  

     Analysis of the CD8+ T cell population as a possible MOG61-85-specific Treg cell 

population showed a slight increase in CD8+ CD25- T cell population in response to 

MOG61-85 in vitro priming; however, this increase was independent of in vivo priming with 

the same peptide (figure VIII). The increase in this population with the comparable 

percentage between all cells agrees with previous findings. Further analysis of this 

population using FoxP3 staining showed an increase in CD8+ CD25- FoxP3+ T cell 

population in response to MOG61-85 in vitro priming (figure XI). The increase in FoxP3 

expression was dependent on in vivo priming with MOG61-85, which suggests that the 

MOG61-85-specific Treg cell population might be a CD8+ CD25- FoxP3+ Treg cell 

population. Additionally, there was a small increase in CD8+ CD25+ T cell population in 

response to MOG61-85 in vitro and in vivo priming. However, the small number of events 

interfered with measuring FoxP3 expression by this population. This population might be 

MOG61-85-specific Treg cell population and will be analyzed in future experiments. 

     Chen et al. characterized a Treg cell population with suppressive effect on MOG- 

induced EAE as CD8+ CD25- LAP+ Treg cell population. This population may or may not 

express FoxP3 and CD25. They showed that this population suppresses EAE by inducing 

the expansion of FoxP3+ Treg cell population [93]. Additionally, Lee et al. described a 

CD8+ CD122+ Treg cell population as a suppressive population that controls the immune 

response at later stages of EAE [97]. Zheng et al. identified another CD8+ Treg cell 
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population. They characterize it as CD8+ FoxP3- CD103+ Treg population that with 

suppressive effect on EAE [100]. 

     The diverse CD8+ Treg cell populations with the unknown cell surface markers might 

limit the identification of a MOG61-85-specific Treg cell population. Also, we identified a 

CD8+ Treg population as FoxP3 expressing cells; however, the comparable FoxP3 

expression introduces the possibility that the MOG61-85-specific Treg cell population does 

not express FoxP3. 

     Future work may include characterization of MDSCs in response to MOG61-85 priming. 

Previous work showed a decrease in this population; however, the decrease was with 

MOG35-85 priming instead of MOG61-85. Therefore, further work is required to investigate 

the effect of MOG61-85 priming on this population. 

     In summary, the results illustrated above showed comparable cell percentages of CD8+ 

CD25- FoxP3+ and CD4+ CD25+ FoxP3+ Treg cell populations in response to MOG61-85 

priming. However, there was a decrease in the CD4+CD25+ cell population in response to 

MOG61-85 priming. Moreover, we noted an increase in CD8+ CD25+ T cell population that 

was dependent on the in vivo priming of MOG61-85. 
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CHAPTER IV: SPECIFIC AIM II 

     Determine the mechanism controlling the suppressive activity of the MOG61-85 specific 

regulatory cell population. 

Background 

     It is accepted that CD4 Th1/Th17 cells specific for myelin proteins mediate the 

pathogenesis of MS/EAE [1,2]. The immune responses initiated by these cells are 

characterized by the mass production of pro-inflammatory cytokines such as IFN-γ, TNF-

α and IL-17. Conversely, switching the immune response towards an anti-inflammatory 

immune response leads to the amelioration of disease [1, 2]. Anti-inflammatory immune 

responses are characterized by the by the production of anti-inflammatory cytokines such 

as IL-10 and TGF-β. In a previous work, we showed that EAE clinical score was 

ameliorated in B-/- mice immunized with rMOG [98]. Further investigation suggested that 

the MOG61-85 epitope is responsible for this amelioration. Additionally, immunization with 

MOG35-85 peptide, encompassing both the disease inducing MOG35-55 and the cryptic 

epitope MOG61-85, showed that EAE amelioration was independent of IL-10 production 

(Agashe et al., unpublished data). Therefore, the following experiment aimed to determine 

the MOG61-85-specific anti-inflammatory cytokine responsible for EAE amelioration.  

     The working hypothesis is that a MOG61-85-specific regulatory cell population 

suppresses the activity of MOG35-55-specific CD4+ T cell by secreting TGF-β. This aim was 

tested in one in vitro study using rMOG-immunized mice. 
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Results 

IL-10 may play a role in EAE onset and severity in rMOG-induced EAE 

          IL-10-/- and WT mice were immunized with rMOG protein and EAE induction and 

progression was monitored for 29 days post immunization. This study was conducted in 

one experiment and the total number of WT and IL-10-/- mice was as shown in table II. 

 

Group Mice Number of mice 

1 ♀ WT C57BL/6  5 

2 ♀ IL-10-/- C57BL/6  5 

 

 

 

      Both IL-10-/- and WT mice developed EAE, however IL-10-/- mice showed severe 

EAE as compared to WT mice (figure XII and XIII). Comparing EAE clinical scores, WT 

mice showed ameliorated EAE as compared to previous immunization with rMOG (data 

not shown). Statistical analysis of EAE severity between WT and IL-10-/- mice using the 

area under the curve (AUC) showed that IL-10-/- mice had significantly more severe EAE 

as compared to WT mice (p =0.0079) (figure XIII). Analysis of the day of EAE onset 

showed that IL-10-/- mice developed EAE earlier than WT mice (p = 0.0238) (figure XIV). 

This indicates that IL-10 might have a role in delaying and ameliorating EAE in rMOG-

immunized mice. 

 

Table II: Groups of mice immunized with rMOG protein.  In this experiment, 

mice received 200 μg of rMOG protein emulsified in complete Freund’s adjuvant 

containing Mycobacterium tuberculosis H37RA.      
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Figure XIII: EAE clinical score in WT and IL-10-/- mice immunized with rMOG 

protein. WT and IL-10-/- mice were immunized with the above-described amount of rMOG 

protein and were observed for 29 dpi. IL-10-/- mice showed more severe EAE as 

compared to WT mice. Error bars represent the clinical score average and the standard 

error of the mean for all the mice in that group. Statistical analysis was performed using 

non-parametric student t-test to compare the mean of the two groups. A p value of < 0.05 

was considered significant.  
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Figure XIV: AUC analysis of WT and IL-10-/- mice immunized with rMOG protein. 

IL-10-/- mice immunized with rMOG protein had higher EAE score as compared with 

WT mice immunized with the same protein. Error bars represent the average and the 

standard error of the mean in the AUC in that group. Statistical analysis was performed 

using the Mann Whitney T test and resulted in a p value of 0.0079. This indicates that IL-

10 may have a role in controlling rMOG-EAE severity. 

 

 

 

 

 

 

 

 

 

 

 

Figure XV: Disease onset in WT and IL-10-/- immunized with rMOG protein. IL-10-/- 

mice developed EAE earlier than WT mice. Error bars represent the average and the 

standard error of the mean in the disease onset in that group. Statistical analysis was 

performed using the Mann Whitney T test and resulted in a p value of 0.0238. This 

indicates that IL-10 might have a role in delaying the disease onset in rMOG-EAE. 

 

 

 

 

 

 

p  = 0.0238 
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MOG61-85 induce cell proliferation in rMOG-EAE 

     To determine if rMOG-primed cells proliferate in response to MOG61-85 we performed 

the CCK-8 cell proliferation assay to measure cell proliferation in response to different in 

vitro stimuli. LN and spleen cells isolated from WT and IL-10-/- mice were cultured in the 

presence of MOG61-85 and MOG35-55, separately. We found that both MOG35-55 and MOG61-

85 induce LN cell proliferation in comparable levels. This indicates that rMOG-primed cells 

recognize MOG61-85 in vitro and respond to its stimulation. Interestingly, both WT and IL-

10-/- derived LN cells responded to MOG61-85 in comparable levels (figure XV). However, 

WT spleen cells responded stronger than IL-10-/- spleen cells (figure XVI).    
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Figure XVI: WT and IL-10-/- LN cell proliferation in response to different stimuli. 

Cells isolated from WT and IL-10-/- mice were cultured with the above labeled stimuli. 

Cells responded to both MOG35-55 and MOG61-85 with comparable values. This 

indicates cell recognition to MOG61-85.  
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Figure XVII: WT and IL-10-/- spleen cell proliferation in response to different stimuli. 

Cell isolated from WT and IL-10-/- mice were cultured with the above labeled stimuli. Cells 

responded to both MOG35-55 and MOG61-85 with comparable values. This indicates cell 

recognition to MOG61-85. 

 

EAE amelioration is independent of IL-10 secretion in rMOG-induced EAE 

     It is accepted that IL-10 ameliorates EAE disease severity, an observation supported in 

previous experiments. To determine if MOG61-85 induced IL-10 secretion, spleen and LN 
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cells from rMOG-immunized mice were cultured in vitro with MOG61-85 and cytokine 

secretion was measured in cell culture supernatants by ELISA. We failed to detect IL-10 

in cell culture supernatants, indicating that this anti-inflammatory cytokine was not 

responsible for disease amelioration by MOG61-85 peptide (figure XVII). This observation 

further supports previous findings that MOG61-85 protective effect is independent of IL-10 

secretion (Agashe V., unpublished data).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure XVIII: IL-10 level in WT cell culture supernatants at three time points.  ELISA 

was used to detect the level of IL-10 secretion in the cell supernatants from the in vitro 

study. The level of IL-10 was below the limit of assay detection in MOG61-85 cell cultures. 

This indicates that MOG61-85 protective effect is independent of IL-10 secretion.  
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MOG61-85 induces TGF-β secretion 

     To further investigate the mechanism by which MOG61-85 suppresses EAE, we measured 

TGF-β levels in the supernatants collected from the cell cultures described above. Data 

showed an increase in TGF-β level in LN cell cultures stimulated with MOG61-85 as 

compared to MOG35-55.  This increase was more evident in cells derived from WT mice as 

compared to IL-10-/- mice (figure XVIII). In contrast, spleen cell cultures showed 

comparable values of TGF-β with MOG61-85 and MOG35-55 stimulation (figure XIX). To 

further characterize the immune response initiated with MOG61-85 stimulation, we 

measured IL-6 in the same cell cultures. 
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Figure XIX: TGF- β level in LN cell cultures. ELISA was used to detect the level of 

TGF- β secretion in the cell supernatants from the in vitro study. The level of TGF-β was 

higher in MOG61-85 cell cultures as compared to MOG35-55 cell cultures. This supports 

the anti-inflammatory effect of MOG61-85 in EAE. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure XX: TGF-β level in spleen cell cultures. ELISA was used to detect the level of 

TGF-β secretion in the cell supernatants from the in vitro study. Results showed 

comparable values of TGF-β level with all culture conditions. 

 

 

 

 



www.manaraa.com

  

 

61 

IL-6 secretion is reduced with MOG61-85 stimulation 

     To determine whether TGF-β secretion induces immune regulation or Th17 immune 

response, we measured IL-6 secretion in the cell culture supernatants. The level of IL-6 

was reduced in MOG61-85 LN cell cultures as compared to MOG35-55 cell cultures (figure 

XX). However, the IL-6 level in spleen cell cultures was higher than the assay limit and 

could not be measured (data not shown). 
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Figure XXI: IL-6 level in LN cell cultures. ELISA was used to detect the level of IL-6 in 

the cell supernatants from the in vitro study. Lower IL-6 secretion was observed in 

cultures stimulated with MOG61-85. 

 

MOG61-85 induce anti-inflammatory immune response 

       The type of immune response generated depends on the signaling cytokines. Signaling 

with TGF-β and IL-2 induces an anti-inflammatory or regulatory immune response while 

signaling with TGF-β and IL-6 initiates a pro-inflammatory Th17 immune response.   We 

observed high TGF-β and low IL-6 secretion in response to MOG61-85 in vitro culturing. 

By mathematically calculating TGF-β to IL-6 ratio (TGF-β:IL-6) we determined the type 

of immune response generated in response to MOG61-85 culturing. We found that MOG61-

85 in vitro culturing is characterized by higher TGF-β:IL-6 ratio as compared to MOG35-55 

culturing. The ratio showed two-fold increase in cell cultures isolated from WT as 

compared to IL-10-/- LN cell cultures (figure XXI). This supports our hypothesis that 

MOG61-85 priming induces an anti-inflammatory immune response characterized by high 

TGF-β secretion. As the level of IL-6 in spleen cell cultures was too high, we failed to 

calculate TGF-β:IL-6 ratio in those cell cultures. 
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Figure XXII: TGF-β:IL-6 ratio in LN cell cultures.  Mathematical calculation of TGF-

β:IL-6 ratio showed a higher ration in MOG61-85 cell cultures as compared to MOG35-55 

cultures. This further supports the anti-inflammatory effect of MOG61-85 stimulation. 

 

Discussion 

      This specific aim investigated the mechanism of MOG61-85 induced amelioration. 

Previous experiments revealed a protective peptide within rMOG protein that induces EAE 

amelioration (Lyons et al., unpublished data). Further work to investigate the anti-

inflammatory effect of MOG61-85 showed that MOG61-85 amelioration was independent of 

IL-10 secretion in MOG35-85-EAE model (Agashe et al., unpublished data). Moreover, 

MOG61-85 induced cellular expansion, of a possible Treg cell population that was 

investigated in specific aim I. Taken together, this led to our hypothesis that MOG61-85 

induces an anti-inflammatory immune response characterized by TGF-β secretion.  
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           Immunizing WT and IL-10-/- mice with rMOG protein showed an ameliorated EAE 

in WT as compared to IL-10-/- mice (figure XII). Therefore, we conducted an in vitro study 

to investigate the anti-inflammatory effect of MOG61-85. By using a cell proliferation assay, 

we found comparable response to both MOG35-55 and MOG61-85 in LN cell cultures. 

However, WT spleen cell culture showed a response to the two MOG peptides while the 

IL-10-/- cell culture responded weakly. Cell proliferation in response to MOG61-85 in vitro 

stimulation indicates that immune cells recognize this peptide and it might have a role in 

EAE amelioration seen in WT mice. However, it is interesting that IL-10-/- cells in culture 

also responded to this peptide. Therefore, this requires further investigation. 

      To support that the anti-inflammatory effect of MOG61-85 is independent of IL-10 

secretion with rMOG immunization, we measured IL-10 levels in both LN and spleen cell 

cultures. We failed to detect IL-10 in MOG61-85 cell cultures, which indicates that MOG61-

85 protection is independent of IL-10 production.  

     To further characterize the immune response induced with MOG61-85 stimulation        we 

measured both TGF-β and IL-6 in the cell cultures and calculated TGF-β:IL-6 ratio. Higher 

ratio indicates that the immune response is characterized by higher TGF-β secretion and 

low IL-6, a possible regulatory immune response. Lower ratio; in contrast, indicates that 

the immune response generated has lower secretion of TGF-β as compared to IL-6, a 

possible Th17 pro-inflammatory immune response. We found that MOG61-85 in vitro 

stimulation induced a high TGF-β:IL-6 ratio, suggesting an anti-inflammatory immune 

response. This supports our hypothesis that MOG61-85 induces an anti-inflammatory 

immune response with high TGF-β production.  
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     Karpus et al. described TGF-β as a suppressor cytokine of the immune response directed 

against MBP. In their in vitro study they showed that TGF-β reduce IFN-γ level in cell 

cultured with MBP, however IFN-γ level increased by neutralizing TGF-β [101]. 

Additionally, our previous work showed that cells primed with MOG61-85 showed 

decreased IFN-γ levels which support ameliorating Th1 immune cells (Lyons et al, 

unpublished data). Another study by Santos et al. studied immune tolerance induced by 

oral administration of MBP into SJL mice. They found that immune regulation is mediated 

by TGF-β secretion and that the adoptive transfer of TGF-β producing T cells suppresses 

active EAE [102].  

      Further work should include measuring other anti-inflammatory cytokines such as IL-

35 and pro-inflammatory cytokines such as IFN-γ, TNF-α and IL-17 to further describe 

MOG61-85 induced immune response. Moreover, the effect of in vivo priming of MOG61-85 

on the immune response should be also described. In addition to EAE suppression via 

cytokine secretion, regulating auto-reactive T cells might be mediated by direct cell-cell 

contact. This possibility should be investigated.  

     In summary, this aim showed that cells derived from WT mice responded to MOG61-85 

in vitro priming which was not observed in previous experiments. Also, we showed that 

MOG61-85 induces an anti-inflammatory immune response characterized with high TGF-β 

production. This study only used WT and IL-10-/- mice, therefore future study will include 

B cell-/- mice to investigate the suppressive cytokine of MOG61-85 peptide. 
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CHAPTER V: DISCUSSION & CONCLUSION 

Discussion 

     Prior studies described a B cell dependent model of EAE. In this model, we observed 

that B cell-/- C57BL/6 mice were resistant to rMOG-induced EAE [96]. Further studies to 

investigate this protection revealed a cryptic peptide of MOG61-85 within rMOG to which 

B-/- mice responded but WT mice did not (Lyons et al., unpublished data). We found that 

co-immunizing mice with the encephalitogenic peptide MOG35-55 and the cryptic peptide 

MOG61-85 ameliorates EAE (Lyons et al., unpublished data). Therefore, we studied the 

effect of MOG61-85 on the immune response. Our studies characterizing the MOG61-85 

response suggested that MOG61-85 stimulation induced an anti-inflammatory immune 

response. This response was independent of IL-10 secretion in MOG35-85-induced EAE 

(Agashe et al, unpublished data). This project aimed to characterize the MOG61-85-specific 

regulatory cell population and determine its anti-inflammatory mechanism in controlling 

EAE pathology. 

     Specific aim I characterized MOG61-85-specific regulatory T cell populations in B cell-/- 

mice. Previous immunization of B cell-/- mice with both MOG35-55 and MOG61-85 produced 

an ameliorated EAE as compared to immunizing B cell-/- mice with MOG35-55 only. 

However, in this study we could not re-produce the same established clinical EAE score. 

This might be due to accidental difference in the peptide concentration used at the time of 

emulsion preparation as less MOG61-85 peptide used might show less effect when combined 

with higher amount of MOG35-55 peptide. Characterizing the MOG61-85-specific Treg cell 

population using flow cytometry showed comparable cell percentage of 

CD4+CD25+FoxP3+ T cells between MOG35-55 and MOG61-85 cell cultures. We also noted 
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a decrease in CD25 expression in cells primed with MOG61-85, which suggest a loss of 

suppressive activity. This opposes our hypothesis, however, based on the clinical score 

seen with this immunization, a MOG61-85-specific Treg population might still be 

CD4+CD25+FoxP3+ T cells. This might be due to unsuccessful in vivo priming with 

MOG61-85, as shown with the clinical score. Insufficient in vivo priming with MOG61-85 

might diminish expansion of the Treg cell population due to lack of processing and 

presentation of this peptide. Moreover, we observed a slight increase in CD8+CD25- 

FoxP3+ T cells with the in vitro priming of MOG61-85. The increase in this population 

agreed with previous findings, which support a role of CD8+ Treg cell populations in the 

induced protection seen with MOG61-85. However, the increase in this population was 

independent of the in vivo priming with MOG61-85. We also noted an increase in CD8+ 

CD25+ T cell population with MOG61-85 in vitro priming. The increase in this population 

was shown to be dependent on the in vivo priming with MOG61-85 peptide. These results 

support a role of Treg cell populations in the protection induced with MOG61-85 

immunization and it characterized CD8+ Treg cells as a possible MOG61-85-specific 

regulatory cell; however, it does not exclude the role of CD4+ Treg cells or MDSCs in EAE 

amelioration. These results could be confounded if the clinical score was significantly 

ameliorated with MOG61-85 immunization and the cell percentage of CD8+ Treg was 

significantly higher with MOG61-85 in vivo and in vitro priming. Another co-immunization 

study is currently being analyzed for EAE clinical score and RNA samples are available to 

evaluate FoxP3 expression. Characterizing the protective immune response generated in 

response to MOG61-85 stimulation may elucidate a protective mechanism by which we can 

overcome the auto-reactive immune response seen in MS pathology. 
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      Specific aim II investigated the suppressive mechanism of MOG61-85. This was 

accomplished by using an in vitro study. WT and IL-10-/- mice were immunized with 

rMOG to study the role of IL-10 versus TGF-β in response to MOG61-85 in vitro priming. 

Previous work showed that only cells harvested from B cell-/- mice immunized with rMOG 

respond in vitro to MOG61-85 as compared to WT mice immunized with rMOG (Lyons et 

al., unpublished data). However, in this study we showed that WT LN cells respond to 

MOG61-85 in vitro priming. This was evident as cells proliferated in vitro in response to this 

peptide. However, this observation could have resulted from protein degradation prior to 

use and is worth investigating by repeating the immunization with newer protein. As 

expected, IL-10-/- mice showed severe EAE; however, they also responded to MOG61-85 in 

vitro priming. Measuring the anti-inflammatory cytokines IL-10 and TGF-β in the cell 

cultures determined the suppressive activity of MOG61-85. As shown by ELISA results, 

MOG61-85 in vitro priming of WT cells support that MOG61-85 suppresses pathology 

independently of IL-10 secretion. However, lack of IL-10 secretion in IL-10-/- mice and the 

severe EAE observed further support the role of IL-10 in EAE protection but not as an 

effect of MOG61-85 stimulation. This was evident, as MOG61-85 primed cultures did not 

show a detectable amount of IL-10. Analysis of TGF-β level as a possible MOG61-85 

specific anti-inflammatory cytokine showed that in vitro priming with this peptide increase 

TGF- β level. Additionally, TGF-β levels was correlated with EAE amelioration. This was 

evident as WT mice showed ameliorated EAE and high TGF-β level as compared to IL-

10-/- mice. To assess the immune response induced in response to MOG61-85 in vitro 

priming, the TGF-β:IL-6 ratio was calculated and we found that the MOG61-85-specific 

immune response switched the pro-inflammatory immune response generated against 
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rMOG towards an anti-inflammatory immune response characterized by high TGF-β and 

low IL-6 levels. This suggests that rMOG induce an in vivo Th17 immune response and 

MOG61-85 in vitro priming is sufficient to control this pro-inflammatory immune response. 

However, further studies with pro-inflammatory cytokine evaluation must be conducted 

before concluding this theory. Supernatants from this study are available for pro-

inflammatory cytokines evaluation. Additional to anti-inflammatory cytokines, MOG61-85 

suppressive activity might be induced by direct cell-cell contact. Thus, future studies must 

investigate this possibility. rMOG protein contains additional peptides that are being 

processed and presented; therefore, it will be interesting to investigate the effect of MOG61-

85 in vivo priming on the cytokine level. This is currently being conducted as cytokines and 

RNA samples are available for analysis. Understanding the mechanism by which the 

cryptic peptide MOG61-85 ameliorate EAE by influencing the immune response is crucial 

as it might introduce potential targets to use for future MS therapy.  

 

Conclusion 

     In conclusion, MOG61-85 suppressive activity is characterized by TGF-β secretion and 

showed an expansion in the CD8+ Treg cell population, which supports a role of induced 

cellular immunity in response to MOG61-85 priming.  
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